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The influence of homogeneous surface perturbations on the surface critical 
behavior of the two-dimensional Ising model is studied through finite-size 
scaling and conformal invariance. Quantum chains of up to 2000 spins are 
studied in the fermionic version of the model. The results are deduced from the 
numerical solution of an eigenvalue equation for the excitation spectrum and 
show that conformal invariance still works for irrelevant surface perturbations. 
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properties. 

1. I N T R O D U C T I O N  

Finite-size scaling theory (1 3) tells us that in a two-dimensional (2D) system 
at its critical point in the strip geometry, the correlation length (or inverse 
gap in the 1D quantum version) associated with an operator diverges like 
the strip width L. It has been conjectured that the correlation length 
amplitude is universal (4-8) and related in a simple way (5'6) to the anomalous 
dimension of the corresponding operator. This remarkable result has since 
been extensively exploited in the numerical calculations of critical 
exponents. 

Besides the invariance under a uniform change of length scale, it has 
been suggested (9-11) that under certain restrictions (translational and rota- 
tional invariance, short-range interactions) a system at its critical point 
also may be invariant under local changes of the length scale, i.e., under 
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conformal transformations. This property has not been exploited until 
recently, (12'13) in particular in 2D problems, where the conformal group is 
isomorphic with the group of analytic functions. 

It was soon realized (14) that finite-size properties at the critical point 
of 2D systems can be deduced from the known properties of the infinite or 
semi-infinite systems through a conformal mapping on the strip geometry. 
The correlation lengths on the strip and their amplitudes are easily 
obtained, confirming the conjectured results. 

Turban (15) suggested that conformal invariance might still hold for the 
2D Ising model with a linear defect. This type of perturbation corresponds 
to a marginal operator (16) leading to a magnetic exponent which is 
continuously varying with the defect strength. (17"1s) The infinite system 
with a defect is mapped onto a strip with periodic boundary conditions and 
two equidistant defect lines. In a numerical study of the 2D classical 
system (is) the correlation length amplitude was found to vary with the 
defect strength in the expected way, although the convergence was slow. 
The amplitude-exponent relation was checked with great accuracy (191 by 
working with long chains in the fermionic 1D quantum version of the 
model. The Hamiltonian spectrum was obtained in diagonal form, (2~ 
confirming the validity of conformal invariance for the whole spectrum. An 
extension to the case of many equidistant defects corresponding to stars of 
linear defects in the original system has been recently studied. (22) 

The magnetic exponent of a single line defect on a strip with periodic 
boundary conditions was previously obtained through finite-size scaling of 
the defect susceptibility in the case of the 2D Ising universality class, where 
the defect is marginal, as well as for the 2D q-state Ports model, where the 
perturbation may be either irrelevant when q < 2 or relevant when q > 2. (23) 
A 2D modified Gaussian model with a defect line which may be mapped 
onto the q-state Potts model and the O(n) model has also been considered 
in the context of conformal invariance to get the exact q and n dependence 
of the critical exponents. (24) 

In this work, we consider the case of an irrelevant perturbation in the 
2D Ising model. We compare the results of a finite-size scaling study of the 
thermal and magnetic surface exponents when a surface perturbation is 
added, with the values deduced from the gap amplitudes when conformal 
invariance is assumed to remain valid, working on the 1D quantum version 
of the model. 

In Section 2, we present the Hamiltonian of the model, its fermionic 
version, and the matrices giving the excitation spectrum. In Section 3, we 
discuss the form of the correlation function, the energy, and the magnetiza- 
tion operators. Section 4 describes the method which is used to get the 
excitation spectrum of the perturbed system. The results for the thermal 
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and magnetic exponents obtained through finite-size scaling and conformal 
invariance are given in Section 5 and discussed in Section 6. The surface 
magnetization of the perturbed semi-infinite system is calculated in 
Appendix A and the results of a duality transformation are presented in 
Appendix B. 

2. H A M I L T O N I A N  A N D  EXCITATION M A T R I X  

Consider the Ising model in a transverse field hi with longitudinal 
coupling Ji on a chain with L spins and free boundary conditions: 

L L - - 1  

= -- ~ h,az( i )-  ~ J, ax(i) ax(i+ 1) (2.1) 
i = 1  i = 1  

where ox and az are Pauli spin operators defined in the usual way, 

1 1, 1 01 (2.2) 
~ 0 ~ 0 -- 

commutes with the parity operator 

L 

P= I] az(i) (2.3) 
i = 1  

so that the eigenstates of ~ are either even ( P =  +1) or odd ( P =  - 1 )  and 
may be classified according to their parity. 

In the present work we study two types of surface perturbations, either 
the chain perturbation with 

hi =hL=h~ 

hi=h, i # l , L  

J~ = J 

(2.4) 

or the ladder perturbation, where 

J1 = JL-  1 = J~ 

Ji=J,  i =  1, 

hi=h 

L - 1  (2.5) 
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The excitation spectrum of 5~ may be obtained using standard 
methods. (25-z7) A Jordan-Wigner transformation 

i - - 1  

e(i) = 1-] exp[irca+(J) a - ( j ) ]  a - ( i )  (2.6a) 
j=l 

i - - 1  

c + ( i ) = a + ( i )  r-[ exp[--irca+(J) a - ( J ) ]  (2.6b) 
j = l  

yields the fermionic representation 
L 

= -- ~ hi[2c+(i) c ( i ) -  1] 
i = 1  

L - - I  

-- ~ J i [ c + ( i ) - e ( i ) ] [ c + ( i +  l ) + c ( i +  l )]  (2.7) 
i = 1  

which is a quadratic form in the fermion operators. It may be diagonalized 
through the canonical transformation 

tl, = ~ [ g~ic(i) + h,ie + (i)] (2.8a) 
i 

tl + = ~ [g~c  + (i) + h~ic(i)J (2.8b) 
i 

leading to 

Jg = E 0 + ~ A~q+ t/, (2.9) 

where E 0 is the ground-state energy. The excitations A: squared are 
solutions of the eigenvalue equation 

=A~6~ (2.10) 

The excitation matrix ~ is the matrix product 

3 = (A - B)(A + B) (2.11) 

where ~ is symmetric 

= _ 

- 2 h l  J1 
J1 2h2 J2 

J2 2h3 

0 

0 

2hL a 

J L -  1 

J L  - 1 

2hi, 

(2.12a) 
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and/~ antisymmetric 

- 0 - J 1  

J1 0 

/ ~ =  J2 

0 

i 

- J 2  0 
0 

0 - - JL-  1 

JL-  1 0 

and such that 

(2.12b) 

(A + B) q~ = A~ ~ (2.13a) 

(A - B) ~u = A , ~  (2.13b) 

where the normalized eigenvectors ~ and ~P are related to the coefficients 
of the canonical transformation (2.8) through 

~b~(i) = g~i + h~i (2.14a) 

~u~(i) = g ~ -  h~ (2.14b) 

In the unperturbed system with hs = h, J, = J, one gets L excitations 

Ak = 2(h 2 qt_ j 2  q_ 2hJ cos k) 1/2 (2.15) 

corresponding to standing waves labeled by their quantized wave vectors, 

k (2n+ 1)n 
(n =0, 1,..., L -  1) (2.16) 

2L+ 1 

3. C O R R E L A T I O N  F U N C T I O N ,  S U R F A C E  M A G N E T I Z A T I O N ,  
A N D  S U R F A C E  E N E R G Y  

For any local operator O~, the time correlation function reads (27) 

Gg(m)= ~ I(~10~ [O)[2exp[-mr(E~-Eo)] (3.1) 
/ ~ 0  

where ]0) is the ground state of the system, I/~) an excited state with 
energy Ea and z the infinitesimal imaginary time interval. When m ~ ~ the 
sum is dominated by the first excited state I~) with nonvanishing matrix 
eleme, nt (~10~ IO) with the ground state and then 

lim G i ( r n )  ~ 1(~[ Oi 10)12 exp[-mr(E~ - E0) ] (3.2) 
m~oo 

822/56/5-6-3 
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so that the inverse correlation length is proportional to the gap E ~ - E  o. 
When L ~ 0% one expects the following scaling behavior for the non- 
diagonal matrix element at the critical point h/J= 1: 

(~10 i  I0),,~L -x~ (3.3) 

where, for free boundary conditions, x~ is a surface exponent. 
In order to get the anomalous dimensions associated with the surface 

magnetization and the surface energy, the following matrix elements are 
convenient: 

ms(1 ) = (tr[ trx(1 ) 10) (3.4) 

es(1) = (el az(1)10) (3.5) 

The diagonal terms would be inappropriate: (01 ax(1)10) vanishes, 
since the ground state is even and ax anticommutes with the parity 
operator, whereas (01 az(1) [0)  contains a disturbing, size-independent 
regular contribution. In Eq. (3.4), Io-) is the lowest eigenstate in the odd 
sector, since tr x anticommutes with P and le) in (3.5) is the first excited 
state in the even sector because az commutes with P. 

In the fermionic representation the parity operator reads 

P = ( - - 1 ) L e x p [ i T r  ~ c+(i) c(i)] (3.6) 
i = 1  

so that when one creates an excitation in the system by acting with q+ on 
the ground state which is even, the fermion number is changed by one unit 
and single-particle (or, more generally, odd-particle-number) excited states 
belong to the odd sector. In the same way, excited states with an even 
number of particles belong to the even sector. It follows that l a ) ,  which is 
odd, corresponds to the lowest single-particle excited state 

la )  = r/~-10) (3.7a) 

E~ = E o + A s (3.7b) 

whereas the two lowest excitations are needed to build le), which is even, 

I ~ )  + + =t/~ t/2 10) (3.8a) 

E~=Eo+ A1 + A2 (3.8b) 

Putting (3.7a) and (3.8a) into (3.4) and (3.5) and using ax and ~rz in 
the fermion representation, one easily gets 

ms(l) = q~l(1) (3.9) 

es(i ) = ~u~(i) qJ2(i) -- ~u2(/) ~1(i) (3.10) 
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It must be stressed that in the limit L ~ ~ ,  me(l) does not only scale 
like, but gives, the surface magnetizationJ 29'3~ The calculation of the 
surface magnetization of the perturbed semi-infinite system is given in 
Appendix A. 

4. E I G E N V A L U E  E Q U A T I O N  FOR T H E  E X C I T A T I O N  
S P E C T R U M  OF T H E  P E R T U R B E D  S Y S T E M  

At the critical point of the bulk (h = J =  1) and with both types of 
surface perturbations (he, Js) the excitation matrix reads 

- h s J s  

heJ  l+J  1 o 
1 2 

0 1 
1 

2 Js 
se 

(4.1) 

Let o92= A2/4; then the eigenvalue equation (2.10) becomes 

~ = 4o92~ (4.2) 

where we write ~ instead of ~ when the eigenvector is not normalized. 
Since ~ is tridiagonal, the eigenvector component ~b(i) only depends on the 
two preceding ones r  1) and i f ( i -2) .  One may introduce the two-com- 
ponent column vector 

if(i) 
~( i+  1) 

and replace the eigenvalue equation by the following set of recursion 
relations(31): 

~O(i) " 0 tl ~b(~/)l ) (4.3) 
~ ( i+1)  =~ i  ~ ( i ) 1 ) ] =  s~ 

with the boundary conditions 

and 

r = i f (L+ 1) = 0, ~,(1)= 1 (4.4) 

ti= t =o92--2, si= -1  ( i= 3 to L--2)  (4.5) 
2 2 o9 --h s 

tl h~Js ' sl = 0 (4.6) 
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t2 = 092 - J~ - 1, s2 = - h  J ,  (4.7) 

0 ~ 2 - 2  1 
tL_ 1 = , sL-  1 = - - -  (4.8) 

L L 

tL - , s/~ = - 1  (4.9) 
L 

The eigenvalues have to satisfy 

~ )  = T L T L  1 ~  L 4T2T 1 ~ (4.10) 

where T = Ti (i = 3 to L - 2). 
W h e n  t 2 - 4 < 0 (A < 4), ~ has two complex conjugate eigenvalues 

2+ = 0 + i(1 - 02) 1/2 = e -+ip (4.11) 

with 0 = t/2, corresponding to propagat ing modes, whereas when t 2 - 4 >1 0 

(A f> 4), the eigenvalues are real 

2+ = 0 _ (0 2 - 1) 1/2 = e -+q (4.12) 

and correspond to localized modes. 
Let  

g+ = 21_+ 

be the eigenvectors; in this basis one may write 

01 = ~ g +  +f ig_  (4.13) T2T1 

and the second component  in Eq. (4.10) leads to the following eigenvalue 
equat ion for the propagat ing modes:  

( tL tL  I -- J , ) [ ( e  + fl) Cos(L - 3) p + i(e - fl) s in (L- -  3) p ]  

--  ( t L / J ~ ) [ ( e + f l ) c o s ( L - 4 ) p + i ( e - f l ) s i n ( L - 4 ) p ] = O  (4.14) 

where 

+/3 = t~ (4.15a) 

i ( ~ - -  f l ) - -  tl  t2 - -  h ~ J ~ -  tl O 
(1 --02) ~/2 (4.15b) 
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The localized modes are given by 

( tL tL_~ -- Js)[(ct + fl) c o s h ( L -  3) q + ( ~ -  fl) sinh(L - 3) q] 

- ( tL/Js)E(r  + fl) cosh(L - 4) q + (~ - /3)  sinh(L - 4) q] = 0 

where 

(4.16) 

e + f l=  t~ (4.17a) 

tl  t2 - -  h , J s -  ta 0 
~- - f l=  ( 0 2  1)~/2 (4.17b) 

For the chain (ladder) perturbation, one gets L propagating modes 
when hs ~< 1, Js = 1 (Js >~ 1, hs = 1), whereas two localized modes and L - 2 
propagating modes are obtained when h~ > 1, Js = 1 (Js < 1, hs = 1 ). 

The components of the eigenvectors ~ may be deduced from 

oti  o 
O(i+ 1) = (4.18) 

j=l 

After normalization one gets q; and finally ~P using Eq. (2.13a). 

5. M A G N E T I C  A N D  T H E R M A L  S U R F A C E  E X P O N E N T S  OF 
T H E  C H A I N  W I T H  D E F E C T S  

The surface magnetization and surface energy have been calculated at 
the bulk critical point h = J = 1 on chains with lengths L = 10 to 2000, with 
either chain or ladder perturbations, using expressions (3.9) and (3.10) for 
them in terms of the eigenvector components deduced from Eq. (4.18). The 
results were checked through a tridiagonalization of ~ in the spin version 

for L ~< 14 and a diagonalization of ~ for L ~< 200. 
Since at the critical point 

m s ( 1 ) ~ L  -x~ (5.1) 

e s (1 )~L  -x; (5.2) 

the surface exponents are given by the slopes of log-log plots and are 
shown on Figs. 1 and 2 as functions of 1/L  2. 

When hs r  X~m and x s always converge toward the unperturbed 
surface values (16'32) 

xmS = 1/2 (5.3) 

x~ = 2 (5.4) 
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Fig. 1. Critical exponents for the surface magnetization x~, and energy x~ obtained through 
finite-size scaling on the Ising chain in a transverse field with size L = 30 to 2000 with a sur- 
face perturbation hs = 5, 4, 3, 2, 1, 0.75, 0.5, 0.4, 0.3, 0.2, 0.1, 1 • 10 -5 from top to bottom. 
The method does not allow taking hs = 0, but the same results are obtained with hs = 1 x 10 5 
for the sizes studied. 

W h e n  h~ = 0 these values change to 

0 (5.5) Xm= 

x~ = 1/2 (5.6) 

The  conformal  t r ans fo rma t ion  

w(z)  = (L /n )  in z (5.7) 

of  the complex  plane maps  the 2D classical semi-infinite system on to  a str ip 
with width  L and  free b o u n d a r y  condi t ions .  (~4) This  leads to a chain with 
L spins and  free ends  in the 1D q u a n t u m  version. To the a lgebra ic  decay  
of the surface cor re la t ion  funct ions at  the cri t ical  po in t  of the semi-finite 
system there co r re sponds  an exponent ia l  decay  on the str ip with a corre la-  
t ion length  p r o p o r t i o n a l  to  the s t r ip  width  and  inversely p r o p o r t i o n a l  to 
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Fig. 2. 
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As on Fig. 1, for a surface perturbation Js = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1, 1.5, 2, 3, 4, 
5, 6 from top to bottom. 

the related surface exponent. In the quantum case on the finite chain, the 
corresponding gaps vanish like L - 1  with an amplitude proportional  to the 
surface - (13) exponents, 

7Z 
G m = E a - E 0 = A 1 = --~ I)sXSrn (5 .8)  

7r 
Ge= E~- E o= A1 + A2= ~ vsx~ (5.9) 

where v,, the sound velocity, is required on dimensional grounds to relate 
the gaps with the dimension of an inverse time to the chain length L. (33~ It 
may be deduced from the initial slope of the dispersion relation, which on 
the finite chain is given by 

AE L 
V s - -  z J k  7t ( A z - - A 1 )  (5 .10)  
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so that, with E,, = E 0 + A2, the gap of the sound velocity is 

7~ 
G.  = E~ - E,~= A 2 -  A I  =-s  v s (5.11) 

The different gaps and excitations are shown on Fig. 3. When 
Eq. (2.15) is taken at the critical point h =  J =  1 of the bulk, one gets 
A k - - v ~ k  with vs = 2. The correct asymptotic behavior is obtained on the 
chain with defect using Eq. (5.10) as shown on Fig. 4, except when h~=0. 
In this latter case, A~ vanishes (see Appendix B) and the appropriate gap 
is 

G~ = A 3 - A  2 (5.12) 

The surface exponents are given by the gap ratios 

S - -  x m - G,,/G~, 
(5.13) 

X~e = Ge/Gv, 

and shown on Figs. 5 and 6. A good convergence toward the values given 
by the finite-size scaling analysis is observed. 

E 

Eo 

Fig. 3. 

Al§ A 2 

i:i A 

E 
u~ 

E 

P=+I P=-I 

Energy levels and excitation spectrum in the two parity sectors. 
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Fig. 4. Sound velocity v s deduced from the gap G v , = A 2 - A  1 (or A 3 - A  2 when h s = 0  ) for 
a surface chain perturbation hs = 5, 4, 3, 2, 0, 1, 0.75, 0.5, 0.4, 0.3, 0.2, 0.1 or a surface ladder 
perturbation Js = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1, 1.5, 2, 3, 4, 5, 6 from top to bottom for chain 
size L = 10 to 2000. 

6. D I S C U S S I O N  

C o n s i d e r  a c lass ica l  sys t em wi th  a defect  w h e r e  the  f i r s t - ne ighbo r  
c o u p l i n g  is p e r t u r b e d  b y  A K  so t h a t  the  c h a n g e  of  the  i n t e r n a l  ene rgy  pe r  
b o n d  is Au  = A K <  a e a : ) =  AKe.  In  a scale  t r a n s f o r m a t i o n  one  gets  

Au'  = b d* Au  (6.1) 

e' = bX'~ (6.2) 

whe re  d *  is the  d i m e n s i o n  of  the  defect  a n d  x t  is the  sca l ing  d i m e n s i o n  of  
the  ene rgy  o p e r a t o r  (o-;o-s). T h e  p e r t u r b a t i o n  A K  scales  l ike 

A K '  = b y* A K =  A~t'/d = b d* x, A K  (6.3) 

so t h a t  its sca l ing  d i m e n s i o n  is 

y *  = d *  - x ,  (6.4) 
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Fig. 5. Critical exponents for the surface magnetization X~m and energy x~ deduced from the 
gap ratios Gm/Gv, and Ge/Gvs on the Ising chain in a transverse field with size L = 10 to 2000 
with a surface perturbation hs = 5, 4, 3, 2, 1, 0.75, 0.5, 0.4, 0.3, 0.2, 0.1, 0 from top to bottom. 
The values for hs = 0. are obtained via duality on an unperturbed chain with L - 1 spins. 

In  the case of a line p e r t u r b a t i o n  in the bulk of  the 2D Ising mode l  
where d*  = xt = 1, one gets y *  = 0 and  the pe r tu rba t ion  is marginal .  W h e n  
the p e r t u r b a t i o n  AKs is on the surface of  the 2D Ising model ,  
X t = XSe = 2 (16'32) and  y *  = y~ = 1 - x~ = - 1 ,  so that  the surface pe r t u rba t i on  

is i r re levant  when AKs is finite. This explains  the finite-size scal ing results  
(x~ = 2, x~, = 1/2) for the l adder  p e r t u r b a t i o n  when Js ~ oo and  the chain  
p e r t u r b a t i o n  when hs r 0. The case hs = 0 cor responds  to AKs = ~ in the 
2D classical  system and  then the surface pe r t u rba t i on  becomes  re levant  
(x~ = 1/2, x~, = 0). U n d e r  r enorma l i za t ion  the surface spin remains  frozen 
in the o rde red  state. 

The  results  deduced  from the gaps  assuming  tha t  conformal  invar iance  
is still val id  for an i r re levant  surface p e r t u r b a t i o n  are  no t  so evident.  
W h e n  the 2D pe r tu rbed  semi-infinite system is m a p p e d  on to  a str ip by  the 
conformal  t r ans fo rma t ion  (5.7) with an i nhomogeneous  scale factor  
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Fig. 6. As on Fig. 5, for a surface perturbation J ,  = 0.7, 0.8, 0.3, 0.9, 0.95, 1, 1.5, 2, 3, 4, 5, 
6 from top to bottom. Notice that at small L the exponents first increase and then decrease 
with Js. 

b(z)= Iwt(z)[ -1, the irrelevant surface perturbation AK~(z)=AKs is 
rescaled to 

AKs(w) = b(z) / AK, (6.5) 

so that we should study the inhomogeneous surface perturbation AKs(w) 
on the strip when we use conformal invariance except when h~--0, since 
then AK~ = oe remains unchanged on the strip. 

To understand the results obtained for the irrelevant perturbation, we 
have to Suppose that on the semi-infinite system the surface perturbation is 
already inhomogeneous and given by 

3Ks(z) = b(z) y: 3Ks (6.6) 

so that on the strip we recover AK~, the constant surface perturbation 
which we studied. The validity of conformal invariance implies that the 
inhomogeneous surface perturbation (6.6) on the semi-infinite system 
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behaves in the same way as the homogeneous perturbation, i.e., is 
irrelevant. 

Let us now turn to the results obtained with he = 0. The exponent x~, 
is recovered in an exact calculation of the surface magnetization 
(Appendix A), leading to 

1 ~ (h /J)  2 1/2 

ms(1 ) = 1 + (h J J )  2 - (h /J )  2 

for the chain defect and 

1 -- (h /J)  2 1/2 

ms(l) = 1 + ( h f J e ~ - - ( h / J )  2 

(6.7) 

(6.8) 

for the ladder defect when h/J<~ 1, so that with v = 1, fls= xm _ e  _ 1/2 when 
he r 0 and Js v ~ ~ and fls = xm = e  0 when he = 0 and Je = ~ .  

All the results are confirmed by a duality transformation (Appendix B) 
under which the chain with L spins, free ends, and hs = 0 transforms into 
an unperturbed chain with L -  1 spins, free ends, and a free spin. To az(1) 
corresponds #x(1) on the dual chain and the surface energy of the pertur- 
bed system scales like the surface magnetization of the unperturbed one, so 
that x~ = 1/2. To ax(1) corresponds the dual parity operator Q, which is 
scale invariant and Xm--e _ 0. This result is recovered if one notices that a x ( L )  
transforms into/~z(L), i.e., the z component of the free spin corresponding 
to a classical Ising chain at its zero-temperature fixed point. Let us finally 
mention that to at( i )  ( i = 2  to L - 1 )  corresponds the dual operator 
/~x(i-  1 )/~x(i) with the dimension of a surface energy x~ = 2, but the surface 
layer with a slower decay of the correlations gives the leading contribution 
on the strip. 

A P P E N D I X  A. S U R F A C E  M A G N E T I Z A T I O N  OF THE S E M I -  
INFINITE C H A I N  W I T H  A S U R F A C E  DEFECT 

The surface magnetization is given by the amplitude of the normalized 
eigenvector corresponding to the lowest excitation A~ on the surface site 

m , (1 )=~ l (1 )  (A.1) 

In the semi-infinite system and in the ordered phase (h/J<<, 1) the 
ground-state is degenerate and A~ vanishes, so that Eq. (2.13a) becomes 

(A + B) q~ = 0 (A.2) 
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providing a recurrence for ~bl(n ) from which the components of the eigen- 
vector may be deduced 

~b1(2 ) = _ ~ ms(l) (A.3) 

q~l(n) = q~1(2) (A.4) 

ms is then determined by the normalization condition ~3~ 

[ (hs~2 ~ (h) 2p] (h.5) 
~b~(n)--l=ms2(1) I + \ L J  p = 0  

n=J. 
At the critical point, h/J= 1 requires ms(1 ) = 0, whereas in the ordered 

phase h/J < 1, the geometric serie may be summed, leading to 

1 - ( h / J )  2 1/2 (A.6) 
ms(l) = 1 - (h/J) 2 + (hs/Js) 2 

In the unperturbed system one recovers 

ms(1 ) = [ 1 - (h/J) 2 ] 1/2 (A.7) 

and fls= 1/2. With the surface defect one gets f l '=  1/2 when h, # 0  and 
Js # oo, and fls = 0 when h, = 0 or Js = ~ .  

A P P E N D I X  B. D U A L I T Y  T R A N S F O R M A T I O N  A N D  S U R F A C E  
CRIT ICAL  B E H A V I O R  OF T H E  C H A I N  W I T H  
hs~-O 

Let us consider the quantum spin Hamiltonian 

L--2 L--1 
~ u f = - h  ~ a z ( i ) - J  ~ ax(i) a x ( i + l )  (B.1) 

i=2 i=l 
on a chain with free ends, L spins, and vanishing surface field h s = 0. Define 
the dual spins as 

#z(i)=Crx(i)ax(i+ l ) ( I ~ < i < L )  (B.2) 

p~(L) = ax(L) (B.3) 
i 

#x(i) = l-[ az(J) (I~<i~<L) (B.4) 
j=l  
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and let 

L 

Q = l-[ #z(J) (B.5) 
j = l  

be the parity operator on the dual chain. The dual operators satisfy the 
Pauli algebra and lead to the following form for the dual Hamiltonian: 

L - - 1  L 1 

~D=--h 2 #x(i-1)#~(i)-J ~ #z(i) (B.6) 
i = 2  i = 1  

The dual system is an unperturbed chain with L -  1 spins and free 
ends together with a free spin #(L). It follows that to each state of the 
chain there correspond the two degenerate states of the free spin and all the 
levels of YF are at least doubly degenerate. Otherwise stated, the system has 
a vanishing excitation energy A~= 0. The surface energy operator az(1) on 
the original system scales like the surface magnetization #x(1) on the dual 
system and the surface magnetization operators ax(1) and ox(L) like the 
parity operator Q and the free spin energy operator ktz(L). 
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